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Spinster Homologue 2 Expression Correlates With Improved 
Patient Survival in Hepatocellular Carcinoma Despite 

Association With Lymph-Angiogenesis
Joy Sarkara, h, Masanori Oshia, b, h, Vikas Satyanandaa, Kohei Chidaa, Li Yanc, Aparna Maitia,  

Nitai Haita, Itaru Endob, Kazuaki Takabea, b, d, e, f, g, i

Abstract

Background: Spinster homologue 2 (SPNS2) is a transporter of sphin-
gosine-1-phosphate (S1P), a bioactive lipid linked to cancer progression. 
We studied the link between SPNS2 gene expression, tumor aggressive-
ness, and outcomes in patients with hepatocellular carcinoma (HCC).

Methods: Gene expression in patients with HCC was analyzed from 
the Cancer Genome Atlas (TCGA) (n = 350) and GSE76427 (n = 115) 
as a validation cohort, as well as liver tissue cohort GSE6764 (n = 75).

Results: High-SPNS2 HCC was significantly associated with high 
level of lymph-angiogenesis-related factors. SPNS2 expression was 
significantly higher in normal liver and early HCC versus advanced 
HCC (P < 0.02). High SPNS2 levels enriched immune response-re-
lated gene sets; inflammatory, interferon (IFN)-α, IFN-γ responses, 
and tumor necrosis factor (TNF)-α, interleukin (IL)-6/Janus kinase/
signal transducer and activator of transcription (JAK/STAT3) sign-
aling, complement and allograft rejection, but did not significantly 
infiltrate specific immune cells nor cytolytic activity score. High-
SPNS2 HCC enriched tumor aggravating pathway gene sets such as 
KRAS (Kirsten rat sarcoma virus) signaling, but inversely correlated 

with Nottingham histological grade, MKI67 (marker of proliferation 
Ki-67) expression, and cell proliferation-related gene sets. Further, 
high-SPNS2 HCC had significantly high infiltration of stromal cells, 
showing that low-SPNS2 HCC is highly proliferative. Finally, high-
SPNS2 HCC was associated with better disease-free, disease-specif-
ic, and overall survival (P = 0.031, 0.046, and 0.040, respectively).

Conclusions: Although SPNS2 expression correlated with lymph-an-
giogenesis and other cancer-promoting pathways, it also enriched im-
mune response. SPNS2 levels were higher in normal liver compared 
to HCC, and inversely correlated with cancer cell proliferation and 
better survival. SPNS2 expression may be beneficial in HCC patients 
despite detrimental in-vitro effects.

Keywords: SPNS2; Sphingosine-1-phosphate; Hepatocellular carci-
noma; Lymph-angiogenesis; Proliferation; Immune response; Gene 
set enrichment analysis

Introduction

Hepatocellular carcinoma (HCC) is the most common type of 
liver cancer, accounting for up to 90% of all primary liver can-
cers [1]. HCC most commonly arises from a background of 
liver injury, chronic inflammation, and cirrhosis [2]. Its bleak 
18-20% 5-year survival [1, 3] is due in part to the facts that 
recurrence after resection of HCC is high at 50-70% at 5 years, 
and many patients present with locally advanced or metastatic 
disease precluding resection. Systemic treatment options for 
HCC have historically been limited [3], however, the land-
scape of systemic treatment is now evolving [4]. Thus, there 
is interest in identifying biomarkers for appropriate treatment 
selection and prognosis.

Sphingosine-1-phosphate (S1P) is a sphingolipid mediator 
which is produced in cells by the phosphorylation of sphingo-
sine [5-7] and has been shown to play a role in inflammation-
associated cancers [8], such as HCC. S1P must be transported 
out of cells in order to act on its receptors [9, 10], and therefore 
functions in an “inside-out” signaling mechanism [5] to regulate 
tumor cell growth and migration [11, 12], lymphangiogenesis 
[13, 14], angiogenesis [12], and recruitment of immune cells 
[15, 16]. Spinster homologue 2 (SPNS2) is an S1P transporter 
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which was first discovered in 2009 [17] and was shown to play a 
role in lymphangiogenesis [9] and in inflammatory and autoim-
mune diseases [18]. SPNS2 has recently been linked to metasta-
sis of HCC in the setting of iron deficiency [19], suggesting that 
its expression could be a therapeutic target in HCC.

The mechanisms by which SPNS2 regulate cancer physi-
ology include the promotion of inflammation, modulation of 
cancer cell survival and migration, and modification of the 
tumor microenvironment (TME) [20]. These mechanisms are 
both linked to and independent of the concentration of S1P 
[20]. However, the net effect of SPNS2 on cancer progression 
is difficult to describe, due to the multiple complex and some-
times conflicting interactions within the TME. Therefore, the 
aim of our study was to evaluate the effect of SPNS2 expres-
sion in HCC on pro- and anti-cancer gene expression, immune 
cell recruitment, and clinical outcomes using a large transcrip-
tomic database. Given the known effects of SPNS2 on lym-
phangiogenesis and cancer cell migration, we hypothesized 
that increased SPNS2 expression would correlate with higher 
HCC stage and poorer survival.

Materials and Methods

Clinical data acquisition

The clinicopathological and gene expression levels of patients 
with HCC from The Cancer Genome Atlas (TCGA) [21] was 
retrieved through cBioPortal as described previously [21-24]. 
The Gene Expression Omnibus (GEO) data set GSE76427 [25] 
was used as a validation cohort. A total of 473 patients with 
HCC were included in the analysis. GEO data set GSE6764 
[26] was used to analyze gene expression profiles at various 
stages of liver fibrosis, cirrhosis and cancer. GSE6764 con-
tained 75 patient samples with 13 samples from cirrhotic tissue, 
17 dysplastic nodules, and 35 HCCs. Given that all the cohorts 
used in this study, TCGA and GEO datasets, are deidentified 
and publicly available, the Institutional Review Board approval 
was waived and informed consent was not applicable to this 
study. Additionally, ethical compliance is not applicable as no 
human or animal subjects were used in this study.

Gene set enrichment analysis (GSEA)

GSEA was performed using the publicly available software 
provided by the Broad Institute [27] as we have previously 
described [28-31]. Hallmark collection in the Molecular Sig-
natures Database (MSigDB) was used for this study. Briefly, 
GSEA ranks all genes (usually around 200) in each gene set, 
then an enrichment score was calculated for each set. The en-
richment score correlates with the frequency that members of 
that gene set occur at the top or bottom of the ranked data set, 
and therefore with expression of genes in each set. To this end, 
the value of the score is arbitrary and its worth is in its com-
parison. The statistical significance of GSEA was determined 
using the false discovery rate (FDR) of 0.25 throughout the 
study as recommended by the developer of the Broad Institute.

Immune cell composition and scores related to immune ac-
tivity

As we previously reported [32-34], immune cell composition in 
a tumor was analyzed using xCell, a computational algorithm 
for enumerating cell subsets from the transcriptome reported 
by Aran et al in 2017 [35]. It integrates the deconvolution ap-
proaches used in CIBERSORT [36]. xCell algorithm estimates 
cell type fractions by comparing 489 gene signatures corre-
sponding to 64 cell types, including lymphatic endothelial cells 
[37], microvascular endothelial cells [38], endothelial cells, per-
icytes and immune cells as we have previously reported [39-41].

Statistical analysis

All the statistical analyses were performed using R software 
[42]. Kaplan-Meier survival analysis was performed in R for 
the survival analysis. A P value of < 0.05 was considered sta-
tistically significant. One-way analysis of variance (ANOVA) 
was used to determine the significance of difference in various 
groups. We used Mann Whitney U test (two group compari-
son) and Kruskal test for multiple group comparison.

Results

SPNS2 expression levels correlate with lymphangiogenesis 
and angiogenesis

We first investigated whether SPNS2 expression in HCC tu-
mors is associated with lymphangiogenesis-related gene ex-
pression. We found that SPNS2-high HCCs were significantly 
infiltrated by lymphatic endothelial cells (estimated using 
xCell algorithm) in both the TCGA (P < 0.01) and GSE76427 
cohorts (P = 0.046) (Fig. 1a). Several markers of lym-
phangiogenesis (platelet endothelial cell adhesion molecule 
(PECAM)1, LYVE1, SOX 18, chemokine (C-X-C motif) li-
gand (CXCL)12, chemokine (C-X-C motif) receptor (CXCR)4, 
Prospero homeobox (PROX)1), were significantly upregulated 
in SPNS2-high tumors in both cohorts (all P < 0.006, except 
for CXCR4 and PROX1 in GSE76427) (Fig. 1b). We then con-
ducted GSEA comparing high vs. low expression of SPNS2 in 
TCGA and GSE76427 cohorts and found that high expression 
of SPNS2 significantly enriched angiogenesis-related gene 
sets (Fig. 1c). Despite this gene set enrichment, SPNS2-high 
HCCs showed a significant infiltration of pericytes, and not 
microvascular endothelial cells, or endothelial cells (Fig. 1d).

SPNS2 expression is inversely correlated with tumor grade 
and size

Given that SPNS2 expression was associated with lymphangi-
ogenesis, we hypothesized that SPNS2 expression would also 
be associated with HCC tumor progression. To test this hy-
pothesis, we compared SPNS2 expression in normal liver tis-
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sue and HCC tumors in the TCGA and GSE76427 cohorts. 
We found that in both cohorts, SPNS2 expression was actually 
higher in normal liver than in HCC tumors (P = 0.016 and P < 
0.001 in TCGA and GSE76427, respectively) (Fig. 2a). In or-
der to further query this unexpected finding, we evaluated the 
expression of both SPNS2 and lymphatic vessel endothelial 
hyaluronic acid receptor 1 (LYVE1) in the GSE6764 cohort 
which included a spectrum of liver tissues from normal liver 
tissue to very advanced HCC as described above. We found 
that the expression of SPNS2 was inversely correlated with 
degree of advancement of HCC, and that this was mirrored in 
expression of LYVE1 (both P < 0.001) (Fig. 2b). This demon-

strated that although SPNS2 expression decreased in correla-
tion with advancement of HCC, lymphangiogenesis similarly 
decreased, which may explain the above findings.

SPNS2-high HCC enriches immune response pathways, 
but this does not correlate with consistent immune cell in-
filtration in the TME

Given the unexpected finding that SPNS2 expression was 
lower in HCC tumors compared to normal liver tissue, we 
conducted GSEA comparing high vs. low SPNS2 expression 

Figure 1. Lymphangiogenesis-related gene expressions by high vs. low SPNS2 expression in HCC of TCGA cohort. (a) Lymphat-
ic endothelial cells estimated using xCell algorithm. (b) Gene expression levels of PECAM1, LYVE1, SOX18, CXCL12, CXCR4, 
and PROX1 in HCC of TCGA. (c) Gene set enrichment analysis (GSEA) of SPNS2 high HCC in two cohorts: angiogenesis-
related pathway. The left side represents high expression, and the right side represents low expression of SPNS2. (d) Boxplots 
of microvascular endothelial cells, endothelial cells, and pericytes by low and high SPNS2 HCC estimated using xCell algorithm. 
CXCL: chemokine (C-X-C motif) ligand; CXCR: chemokine (C-X-C motif) receptor; HCC: hepatocellular carcinoma; PECAM: 
platelet endothelial cell adhesion molecule; PROX: Prospero homeobox; S1P: sphingosine-1-phosphate; SOX: Sry-type HMG 
box; SPNS2: spinster homologue 2; TCGA: The Cancer Genome Atlas.
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in HCC of TCGA and GSE76427 cohorts. We found that high 
SPNS2-expressing in HCC significantly enriched inflamma-
tion and immune response-related gene sets including inflam-
matory response, tumor necrosis factor (TNF)-α signaling, in-
terleukin (IL)-6 signaling, interferon (IFN)-α response, IFN-γ 
response, allograft rejection, and complement (Fig. 3a). How-
ever, this did not translate to an increased host immune cell 
infiltration in the TME by xCell algorithm. SPNS2-high HCC 
did not demonstrate significant infiltration of lymphocytes or 
myeloid-derived immune cells (Fig. 3b), as would have been 
expected based on the GSEA. Furthermore, there was no con-
sistent infiltration of pro-cancer immune cells such as regula-
tory T cells or M2 macrophages (Fig. 3c). There was no dif-
ference in overall cytolytic activity score (CAS) by SPNS2 
expression (Fig. 3d).

SPNS2 expression in HCC tumors was associated with 
enrichment of tumor-aggravating pathways, but with less 
cell proliferation

As we had previously found that SPNS2 expression correlated 
with lymphangiogenesis, we then conducted GSEA to evaluate 
the link between SPNS2 expression and other tumor-aggravat-
ing pathways. We found that many of the cancer-aggravating 
pathways were enriched with high SPNS2 expression, such as 
KRAS signaling, epithelial-mesenchymal transition (EMT), 
Notch signaling, tumor growth factor (TGF)-β signaling, api-

cal junction, hypoxia, androgen response, and estrogen re-
sponse, consistently across both cohorts (FDR < 0.25 for all) 
(Fig. 4a).

However, this did not translate to cancer cell proliferation. 
We found that SPNS2 expression actually negatively corre-
lated with tumor grade in TCGA cohort (P < 0.001) (Fig. 4b). 
Additionally, HCCs with high SPNS2 expression had lower 
MKI67 expression (P < 0.001), indicating less cell prolifera-
tion (Fig. 4c). In order to investigate this finding further, we 
conducted GSEA for cell proliferation-related pathways and 
found that E2F targets and G2M checkpoint were enriched 
with lower SPNS2 expression, not higher, consistently in both 
cohorts (FDR < 0.25 for all) (Fig. 4d). Additionally, in con-
ducting GSEA for the tumor suppressing p53 pathway, we 
found that HCCs with higher expression of SPNS2 enriched 
the p53 pathway in both cohorts (FDR < 0.25 for both) (Fig. 
4e). Thus, although SPNS2 expression correlates with expres-
sion of multiple tumor-aggravating pathways, it is actually 
linked to lower tumor grade and proliferation.

The TME of SPNS2-high tumors is characterized by 
higher stromal cell infiltration

Given the finding that SPNS2 expression was associated with 
less cell proliferation, we aimed to gain a broader view of the 
TME by comparing the infiltration of stromal cells in SPNS2-
high versus SPNS2-low HCCs using the xCell algorithm. We 

Figure 2. Gene expression in the spectrum of normal liver tissue to very advanced HCC. (a) SPNS2 expression in normal tis-
sue compared to HCC tumors in TCGA and GSE76427 cohorts. (b) Expression of SPNS2 and lymphangiogenesis-related gene 
LYVE1 in GSE6764 cohort. vE-HCC: very early HCC; E-HCC: early HCC; H-HCC: advanced HCC; vH-HCC: very advanced 
HCC; HCC: hepatocellular carcinoma; TCGA: The Cancer Genome Atlas; SPNS2: spinster homologue 2; DL: dysplasia.
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found that increased SPNS2 expression correlated with a high-
er infiltration of fibroblasts and adipocytes in the TCGA cohort 
(P < 0.001), and with adipocyte infiltration in the GSE74627 
cohort (P = 0.01) (Fig. 5a). Subsequently, we conducted GSEA 
of adipogenesis and fatty acid metabolism gene sets compar-
ing high versus low SPNS2 expression and found that they 
were significantly enriched to SPNS2-high HCC consistently 
across both TCGA and GSE78427 cohorts (FDR < 0.25) (Fig. 
5b). These results show that high SPNS2 expressing HCC pa-
tients were associated with increased generation of adipocytes 
and infiltration of fibroblasts in the TME, which is in agree-
ment with less cancer cell proliferation.

High SPNS2 expression was associated with better dis-
ease-free survival (DFS) in HCC patients of TCGA cohort

We initially hypothesized that HCC with high expression of 
SPNS2 would lead to worse survival. Surprisingly, we found 
that high expression of SPNS2 was associated with signifi-
cantly better DFS (P = 0.031), disease-specific survival (DSS) 
(P = 0.046) and overall survival (OS) (P = 0.040) in the TCGA 

cohort (Fig. 6). This result was validated by Kaplan-Meier 
Plotter (RNA-seq, n = 364 [43]) that patients with high SPNS2 
expression HCC had better OS, hazard ratio (HR) = 0.52 (0.36 
- 0.75), log-rank P = 0.00033. On the other hand, although 
DFS was significantly better in high SPNS2 with log-rank P = 
0.042, HR (high) = 0.73, P (HR) = 0.041, n (high) = 182 and 
n (low) = 182, there was no difference in OS (log-rank P = 
0.082, HR (high) = 0.73, P (HR) = 0.083, n (high) = 182 and n 
(low) = 182) in Gene Expression Profiling Interactive Analysis 
(GEPIA) [44].

Discussion

S1P has been linked to inflammation-related cancers such as 
HCC, and this association has been explored in our previous 
works [8] as well as extensively by several other groups. Since 
S1P is a signaling lipid, many studies measured the expression 
of specific generating kinases, sphingosine kinase 1 and 2. In 
the current study, we focused on SPNS2 because it is a spe-
cific S1P transporter [16], and we have previously shown that 
it is associated with lymphangiogenesis [45] that plays a role 

Figure 3. Immune response and immune cell infiltration in SPNS2-high HCC in two cohorts. (a) Gene set enrichment analysis 
(GSEA) of inflammation and immune response-related pathways: inflammatory response, TNF-α signaling, IL-6 signaling, IFN-α 
response, IFN-γ response, allograft rejection, and complement. The left side represents high expression, and the right side rep-
resents low expression of SPNS2. SPNS2 high and low expression groups were divided by median to perform the analysis. Nor-
malized enrichment score (NES) and false discovery rate (FDR) of each analysis are shown in the graph. FDR of less than 0.25 
were defined as statistically significant following the recommendation of the developer. (b) Estimated abundance of anti-cancer 
immune cells using xCell algorithm on each transcriptome (c) Estimated abundance of pro-cancer immune cells. (d) Cytolytic ac-
tivity score (CAS). CD8: CD8 T cells; CD4: CD4 T cells; Th1: type 1 helper T cells; M1: M1 macrophage; DC: dendritic cells; NK: 
natural killer cells; Treg: regulatory T cells; Th2: type 2 helper T cells; M2: M2 macrophages; TNF: tumor necrosis factor; HCC: 
hepatocellular carcinoma; IFN: interferon; IL: interleukin; SPNS2: spinster homologue 2; TCGA: The Cancer Genome Atlas.
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in cancer progression. SPNS2 plays a complex role in cancer 
progression both linked to and independent of its effect on S1P 
concentrations in the TME.

In our study, we found that SPNS2 expression correlat-
ed with lymphatic endothelial cell infiltration as well as in-
creased lymphangiogenesis and angiogenesis. Gene expres-
sions of CXCR4 and PROX1 showed a similar trend but did 
not reach significance in validation cohort, most likely due to 
its small cohort size. This aligns with previous studies which 
have demonstrated that SPNS2-deficient mice have irregular-
ity and disorganization of lymphatic vessels [45, 46], suggest-
ing that SPNS2 is required for lymphatic vessel maturation. 
Given the enrichment of angiogenesis gene set without infil-
trations of microvascular endothelial cells but with pericytes, 
this implicates enhanced generation of mature blood vessels in 
SPNS2-high HCCs. As we identified a link between SPNS2 
expression and lymphangiogenesis/angiogenesis, we evalu-
ated the effect of SPNS2 expression on other tumor-promoting 
pathways. Indeed, we found as expected that many pro-cancer 
pathways such as KRAS signaling and EMT were enriched in 
high-SPNS2 HCC tumors. Interestingly, our findings here are 
in contrast with a 2021 study which found that SPNS2 expres-
sion in colorectal cancer (CRC) was negatively correlated with 

EMT [47]. This suggests that the effect of SPNS2 on tumor 
progression could vary depending on the type of cancer.

Based on our findings that SPNS2 expression correlated 
with expression of cancer-promoting pathways, we expected to 
find that tumor grade, size and proliferation would be greater in 
high-SPNS2 HCC. Surprisingly, we found that the converse was 
true. Although SPNS2 expression trended upward in correlation 
with progressive liver tissue dysplasia and fibrosis, it then peaked 
in early HCC and was then inversely correlated with tumor grade 
and size. SPNS2 also inversely correlated with MKI67 expres-
sion and enrichment of cell proliferation pathways. Our findings 
suggest that SPNS2 may play different roles at various stages of 
tumor development, with initial stimulation of lymphangiogen-
esis that increases with worsening dysplasia and inflammation, 
but afterward with tumor suppression effects in higher stage dis-
ease. Lv et al also found that SPNS2 expression was significantly 
lower in higher stage CRC tumors and in liver metastases from 
CRC, concluding that the eventual downregulation of SPNS2 is 
important to the progression of CRC [47].

In addition to its role in aggravating cancer, S1P and its 
transporter SPNS2 have been well described in regard to their 
roles in immune system function and inflammation [15, 16]. 
For example, mice with SPNS2 gene deletion have been shown 

Figure 4. Tumor aggravating pathways were enriched to high SPNS2-expressing HCC, but it was associated with less cell prolifera-
tion. (a) Gene set enrichment analysis (GSEA) of tumor aggravating pathways in hallmark collection; KRAS signaling, epithelial mes-
enchymal transition (EMT), Notch signaling, TGF-β signaling, apical junction, hypoxia, androgen response, and estrogen response 
early. (b) SPNS2 gene expression levels by Nottingham histological grade in TCGA cohort. (c) Ki67 gene (MKI67) expression levels 
by high vs. low expression of SPNS2. GSEA of (d) cell proliferation-related gene sets in hallmark collection; E2F targets and G2M 
checkpoint, and (e) p53 pathway. FDR of less than 0.25 were defined as statistically significant following the recommendation by 
the Broad Institute. NES: normalized enrichment score; FDR: false discovery rate; E2F: cellular DNA binding activity regulating ex-
pression of E2 promoter; G2M: G2/M DNA damage checkpoint; HCC: hepatocellular carcinoma; KRAS: Kirsten rat sarcoma virus; 
MKI67: marker of proliferation Ki-67; SPNS2: spinster homologue 2; TCGA: The Cancer Genome Atlas; TGF: tumor growth factor.
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to have reduced inflammation [16], and S1P has been linked to 
TNF-α release [48] and fibrosis [49, 50]. SPNS2 expression is 
known to play a role in B- and T-lymphocyte egress [5, 16, 51-
53], as well as in the survival of naive T cells [54]. Additionally, 
SPNS2 expression and the S1P gradient it generates has been 
found to be essential to the appropriate positioning of natural 
killer (NK) cells within the periphery of lymph nodes, which in 
turn is important for timely macrophage stimulation via IFN-γ 
[16, 55]. Lastly, as lymphatic endothelial cell expression of 
SPNS2 is specific to secretion of lymph S1P without effect 
on concentrations of plasma S1P, SPNS2 has been suggested 
as a potential target of immunotherapy [56, 57]. Surprisingly, 
we found that high SPNS2 HCC was not associated with sig-
nificantly high infiltration of specific immune cell infiltration 
in the TME as would be expected. While SPNS2-high tumors 
showed lower cell scores of anti-cancer immune cells CD8, 

Th1, and M1, they also demonstrated lower cell scores of pro-
cancer immune cells Th2 and B cells. These results demon-
strate that, although higher levels of S1P export were signifi-
cantly associated with host immune response, there was no net 
influence of SPNS2 expression on the immune cell infiltration, 
suggesting the involvement of additional factors. For example, 
CD4+ CD25+ regulatory T cells (Tregs) are known to dampen 
the immune response by suppressing self-reactive T lympho-
cytes and have a well-described role in HCC in part due to the 
liver’s function as a central immunomodulator [58]. However, 
the role of Tregs in HCC varies depending on the underlying 
etiology; in chronic viral hepatitis, an increase in peripheral 
and liver Tregs have been reported, whereas autoimmune liver 
disease is characterized by a qualitative and quantitative Treg 
deficiency [58]. Further, infiltration of Tregs may even parallel 
other T cells in certain occasions [59]. Given that our cohorts 

Figure 5. Stromal cell infiltration and metabolism related gene sets. (a) Estimated abundance of stromal cells using xCell algo-
rithm. (b) Gene set enrichment analysis (GSEA) of metabolism-related pathways: adipogenesis, and fatty acid metabolism. The 
left side represents high expression, and the right side represents low expression of SPNS2. SPNS2 high and low expression 
groups were divided by median to perform the analysis. Normalized enrichment score (NES) and false discovery rate (FDR) of 
each analysis are shown in the graph. FDR of less than 0.25 were defined as statistically significant following the recommenda-
tion of the developer. SPNS2: spinster homologue 2; TCGA: The Cancer Genome Atlas.

Figure 6. Kaplan-Meier survival analyses between high (red line) and low (blue line) expressions of SPNS2, divided by median 
cutoff in HCC patients of TCGA. DFS: disease-free survival; DSS: disease-specific survival; OS: overall survival.
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included a variety of liver tissue samples with various underly-
ing pathologies, this may partly explain the inconsistency of 
immune cell infiltration in the TME.

On the other hand, high-SPNS2 HCCs consistently showed 
significant enrichment of inflammatory and immune-response 
related gene sets. We did find that high-SPNS2 tumors showed 
a higher infiltration of adipocytes and fibroblasts, which is 
in line with prior studies demonstrating that the function of 
SPNS2 in stromal cells is crucial to immune system func-
tion [60]. Although it is possible that chronic inflammation 
that generated HCC may have evoked lymphangiogenesis via 
SPNS2 expression, this causal relationship needs to be proved 
by experimental settings.

Finally, our results demonstrated that higher expression 
of SPNS2 was unexpectedly linked to a statistically signifi-
cant increase in DFS, and a trend toward better DSS and OS. 
This was surprising to us given the studies which have dem-
onstrated that deficiency of the SPNS2 gene is associated with 
metastatic suppression [57, 61]. These results were validated 
by Kaplan-Meier Plotter analysis and GEPIA, although OS 
was not statistically significant, which may be due to other 
cohort factors such as age or comorbidities of the patients. 
As noted above, these findings may reflect the different roles 
that SPNS2 may play at various stages of tumor development, 
and this highlights the complexity of the interactions within 
the TME. Taken together, we cannot help but speculate that 
high SPNS2-expressing HCC that secrete S1P evoke immune 
response without specific infiltration of immune cells, which 
may have had a positive impact on response to treatment or 
suppression of recurrence of HCC that overcame the detrimen-
tal effects of tumor aggravating pathways.

The link between SPNS2 and lymphangiogenesis as well 
as immune-response related gene sets suggests its potential 
as a target in treatment of HCC. Historically, systemic treat-
ment of HCC was limited to the tyrosine kinase inhibitor (TKI) 
sorafenib; and despite the impact that immune checkpoint in-
hibitor (ICI) therapy has had on other cancers such as melano-
ma and lung cancer, ICI monotherapy was not found to provide 
a survival benefit in HCC compared to sorafenib [4]. However, 
the recent IMbrave150 trial demonstrated superiority of com-
bined ICI atezolizumab plus anti-vascular epithelial growth 
factor (VEGF) monoclonal antibody bevacizumab in the treat-
ment of unresectable HCC, which has stimulated interest in 
combination therapy of TKIs plus ICIs for HCC, with several 
ongoing clinical trials [4]. The success of combination therapy 
in HCC plays on the interaction between proangiogenic factors 
and the anticancer immune response, both of which are shown 
in our results to be associated with SPNS2 expression.

There are some limitations associated with the use of a tran-
scriptomic database. The retrospective nature of the study and 
the narrow clinical picture obtained from a database do restrict 
our ability to define the causal association between SPNS2 ex-
pression and tumor progression. Many factors can potentially 
affect survival. For example, a 2021 epidemiological study out 
of Italy spanning the previous 15 years demonstrated the chang-
ing scenario of HCC in the last decades, showing that patient 
survival improved over time due to increased use of thermal ab-
lation as well as patient-tailored therapy in intermediate stages 
[62]. Unfortunately, these factors cannot be easily captured in a 

tissue sample database. On the other hand, the use of a transcrip-
tomic database and a computational algorithm for examining 
cell composition afforded us a larger sample size as well as the 
ability to obtain a global picture of the TME.

In conclusion, we found that while increased expression 
of the SPNS2 transporter in HCC was associated with lym-
phangiogenesis and multiple tumor-promoting cancer path-
ways, SPNS2 expression clinically correlated with decreased 
cancer cell proliferation and an improved DFS. Our findings 
help to further illustrate the relationship between the S1P axis 
and tumor progression in HCC.
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