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Abstract

Perivascular epithelioid cell neoplasms (PEComas) are a rare catego-
ry of mesenchymal tissue tumors, manifesting across various tissues 
and organs such as the kidneys, liver, lungs, pancreas, uterus, ovaries, 
and gastrointestinal tract. They predominantly affect females more 
than males. PEComas characteristically express both melanocytic 
and smooth muscle markers, making immunohistochemistry vital for 
their diagnosis. Renal angiomyolipoma (AML) represents a common 
variant of PEComas, typically marked by favorable prognoses. None-
theless, only a small fraction of subtypes, especially epithelioid AML, 
possess the capacity to be malignant. Renal PEComas usually appear 
as asymptomatic masses accompanied by vague imaging character-
istics. The main methods for diagnosis are histopathological analy-
sis and the application of immunohistochemical stains. Presently, a 
uniform treatment plan for renal PEComas is absent. Strategies for 
management include active surveillance, selective arterial emboliza-
tion, surgical procedures, and drug-based treatments. The focus of 
this review is on renal PEComas, shedding light on their pathogene-
sis, pathological characteristics, clinical presentations, diagnosis, and 
treatment modalities, and incorporating a clinical case study.
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Introduction

Perivascular epithelioid cell neoplasms (PEComas) are an 
uncommon type of tumor. According to the 2020 WHO Clas-
sification of Soft Tissues and Bone Tumors, PEComas are 
described as mesenchymal neoplasms composed of perivas-

cular epithelioid cells (PECs) - distinctive epithelioid cells 
that are often closely associated with blood vessel walls and 
that express both melanocytic and smooth muscle markers 
[1]. PEComas can manifest in various body parts, including 
the kidneys, liver, lungs, pancreas, uterus, ovaries, and gas-
trointestinal tract, and exhibit a higher prevalence in women. 
Excluding organs linked to gender (like the uterus, uterine, 
prostate), the occurrence rate in women ranges from 1.6 to 5 
times greater than in men, as reported by various institutions 
[1-4]. Diagnosis predominantly relies on histopathology, com-
plemented by immunohistochemistry, which typically reveals 
melanocytic and smooth muscle markers. Currently, there is 
no standardized treatment protocol for PEComas, and the main 
therapeutic approach involves surgical resection and adjuvant 
drug therapy, with options like chemotherapy, tyrosine kinase 
inhibitors (TKIs), and the mechanistic target of rapamycin 
(mTOR) inhibitors.

This review comprehensively examines renal PEComas, 
including their pathogenesis, pathological characteristics, clin-
ical presentations, diagnosis, and treatment modalities. The 
latter section offers a succinct overview of PEComas, framed 
within a recent case involving a male patient diagnosed with 
renal PEComas at our institution.

Pathogenesis

The precise mechanisms underlying the pathogenesis of PE-
Comas remain elusive. Considering molecular genetics, the 
emergence of this tumor may be associated with mutations in 
specific genes including tuberous sclerosis complex (TSC), 
TFE3, and TP53.

TSC mutation

The TSC, an autosomal dominant disorder, arises from mu-
tations in the TSC1/TSC2 genes, impacting multiple human 
organs and tissues including the brain, skin, heart, lungs, and 
kidneys. Its primary manifestations are neurological and psy-
chiatric symptoms. Chromosome 9q34.13 houses TSC1, which 
encodes the hamartin protein, while chromosome 16p13.3 
houses TSC2, which encodes the tuberin protein. The coding 
products of the two genes collaborate as a heterodimer in the 
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creation of the TSC, classified as a tumor suppressor, thereby 
impeding the mTOR pathway. The normally active mTOR 
pathway facilitates cell growth and proliferation, and reduces 
autophagic cell death by engaging several downstream signal-
ing molecules such as 4EBP1, S6K, SREBP1, and ULK1. Mu-
tations in TSC1/TSC2 disrupt the TSC, leading to unchecked 
cell proliferation due to deregulation of the mTOR pathway 
[5, 6]. Following the exclusion of about 10% of TSC patients 
with mutations not detectable [6], close to 70% show TSC2 
mutations and 20% exhibit TSC1 mutations [7, 8]. Addition-
ally, chromosomal analysis of PEComas tumor tissues indi-
cates frequent TSC2 gene deletions on chromosome 16p [9, 
10], implicating mTOR pathway activation due to TSC gene 
mutations in PEComas pathogenesis. While there is a close as-
sociation between TSC and PEComas, they are distinct condi-
tions. Roughly 60% to 80% of TSC patients develop PECo-
mas, while approximately 80% to 90% of PEComas patients 
do not concurrently present with TSC [11-13].

Microphthalmia-associated transcription factor (MiT) 
family

The MiT family, including MiT, TFEB, TFEC, and TFE3, 
plays a pivotal role in tumorigenesis by regulating autophagy 
and lysosomal functions. Amplifications and rearrangements 
of MiT, TFEB, and TFE3 within this family have been identi-
fied in various human tumors, including melanoma, renal cell 
carcinoma (RCC), and lung soft tissue sarcoma, among others 
[14, 15]. TFE3, located on chromosome Xp11, is frequently 
involved in gene fusion events due to chromosomal translo-
cations, thus contributing to disease pathogenesis. In PECo-
mas, TFE3 has been found to fuse with multiple genes, such 
as SFPQ, DVL2, NONO and RBMX [16-19]. Historically, the 
absence of concurrent TSC1/TSC2 and TFE3 alterations in 
PEComas led researchers to view TFE3 rearrangement as an 
alternative to TSC mutations, deemed mutually exclusive [20]. 
However, recent studies reveal the coexistence of TSC mu-
tations and TFE3 overexpression in PEComas [21]. Another 
member of this familial cohort, MiT, has also demonstrated 
expression within PEComas. Pertinent investigations suggest 
that the overexpression of MiT could potentially stimulate the 
proliferation, invasion, and metastasis of PEComas by elevat-
ing the downstream expression levels of CYR61 [22].

TP53 mutation

A range of human cancers, PEComas included, show altera-
tions in the TP53 oncogene [23]. Research into most PECo-
mas instances has revealed that mutations in TP53 often occur 
alongside alterations in TSC1/TSC2, TFE3, and other genes 
involved in PEComa development, with these gene mutations 
not being the sole cause of PEComas [24-26]. Recent research 
has pinpointed PEComas with TP53 mutations, absent of si-
multaneous TSC mutations or TFE3 rearrangements [27], in-
dicating TP53’s possible role as a key influencer in PEComa’s 
emergence. Nonetheless, additional studies are required to de-

termine if mutations in TP53 solely serve as the fundamental 
cause of PEComas without TSC mutations or TFE3 rearrange-
ments [28, 29].

To sum up, the pathogenic mechanisms underlying PE-
Comas remain elusive. Current analysis of case studies indi-
cates that PEComas’ etiology is not attributable to a singular 
gene mutation. Instead, it appears to result from a confluence 
of multiple genetic alterations, notably involving TSC1/TSC2, 
TFE3, and TP53 genes. Further investigative efforts are im-
perative to elucidate the precise pathogenesis of PEComas.

Pathological Features

PEComas tissue characteristically contains a plethora of blood 
vessels and a significant number of epithelioid cells (PECs). 
Due to the absence of an analogous cell in normal human tis-
sues, the origin of PEComas is still indeterminate, with some 
experts suggesting a neural crest origin. PECs are typically 
arranged in radial or clustered patterns around blood vessels, 
frequently penetrating into the walls of small to medium-
sized vessels, extending to the subendothelial layer. PECs 
adjacent to vessel walls predominantly exhibit an epithelioid 
form, whereas those more distant present as spindle-shaped. 
The PEC cytoplasm is eosinophilic, turning translucent when 
it accumulates substantial fat. The cells’ central nuclei are di-
minutive, round, or oval, sometimes encircled by an eosino-
philic band. Nucleoli are minute and pronounced, and certain 
PECs may display intensely stained nucleoli or irregular nu-
clear morphology [2, 30]. Renal angiomyolipoma (AML) is a 
common type of PEComas. AML’s cancerous tissue contains 
typical PECs and is rich in vascular and adipose components, 
accompanied by irregularly distributed epithelioid or spindle-
shaped smooth muscle cells. Renal AML is categorized into 
various types such as classic AML, microscopic AMLs, intra-
glomerular lesions with similar features of AML, AML with 
epithelial cysts, oncocytoma-like AMLs, lymphangiomyoma-
tosis of the renal sinus, epithelioid AML (eAML), among oth-
ers, due to differences in composition, tissue structure, and 
lesion placement [13, 31]. Most renal PEComas are non-ma-
lignant growths, typically showing positive outcomes. Merely 
a select few exhibit a prognosis that is more pessimistic. AMLs 
prone to malignancy often exhibit harmful pathological traits, 
signaling invasive tendencies, such as pronounced nuclear 
atypia, elevated cell density, a high nuclear division index, tu-
mor necrosis, and the invasion of blood vessels and lymphatic 
systems [2, 13, 30, 32]. eAML, a variant of AML, refers to a 
classification with malignant potential [32, 33-34], account-
ing for approximately 4.6% of all AML instances. Epithelioid 
cell percentages in eAML vary between 5% and 100%, which 
may correlate with the severity of the tumor’s malignancy 
[31, 35]. Various research indicates specific baseline ratios of 
epithelioid cells necessary for eAML diagnosis. According to 
the 2022 WHO tumor classification, it is advised to diagnose 
eAML if the proportion of epithelioid cells is 80% or more 
[36].

The prognosis of various eAML cases varies, discernible 
through their histopathological features, indicating diverse 
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malignancy or risk groups. Brimo et al identified four ad-
verse characteristics: 1) ≥ 70% atypical epithelioid cells; 2) ≥ 
2 mitotic figures per 10 high-power fields (HPF); 3) atypical 
mitotic figures; and 4) necrosis. eAML presenting with 1 - 2 
of these adverse features is classified as benign, while those 
manifesting 3 - 4 features are considered malignant [4]; Nese 
et al delineated five criteria: 1) TSC and/or concurrent AML; 
2) tumor size (> 7 cm); 3) morphological pattern A; 4) extrare-
nal extension and/or involvement of renal vein; and 5) necro-
sis. Meeting 0 - 1 of these criteria signifies a low-risk group, 
2 - 3 criteria indicate a moderate-risk group, and meeting 4 - 5 
criteria corresponds to a high-risk group [37].

Immunohistochemistry indicates that most PEComas si-
multaneously express markers of melanocytic markers (such 
as HMB45, melan-A, MiT) and smooth muscle markers (such 
as SMA, desmin, caldesmon, etc.). Other commonly expressed 
markers include cathepsin K [38, 39], STING [40], PNL2 [41], 
TFE3, S100, etc. [13, 31]. In some PEComas, only one type of 
marker may be expressed or predominance in the expression of 
one over the other is observed, such as epithelioid cell-domi-
nant PEComas tending to highly express melanocytic markers, 
while spindle cell-dominant PEComas exhibit high expres-
sion of smooth muscle markers [2]. In renal PEComas, mark-
ers with higher sensitivity include HMB45 and melan-A [42, 
43]. Other common indicators include estrogen receptor (ER) 
and progesterone receptor (PR) [13], with literature indicat-
ing that ER and PR positivity rates fluctuate between roughly 
42.4% and 83% and 15.2% and 100%, respectively [44, 45]. 
Other commonly noted markers include PNL2, cathepsin K, 
and more. eAML’s marker profile, indicative of malignancy, 
reflects that of other AMLs [41, 43], characterized by markers 
such as Ki-67 [46], p53 [26], SMA [47], which show varied 
expression levels and could be significant in prognosis.

Clinical Manifestations and Diagnosis

Renal PEComas usually appear asymptomatically and are 
frequently found by chance in imaging processes [11]. TSC-
related AML typically begins at a younger age, as various 
studies show a median age under 20 years [12, 48, 49], with 
about 80% of such cases presenting as bilateral, multifocal 
masses, and tumors not exceeding 3 cm in diameter account-
ing for roughly 65% of these cases. The distinct manifestation 
of small, multifocal, bilateral masses becomes more evident in 
those with TSC2 mutations [12, 48]. Excluding approximately 
80-90% of patients without kidney symptoms, common in-
dicators of TSC-related AML include nonspecific pain, high 
blood pressure, tumor rupture causing bleeding, blood in urine, 
and reduced kidney function. Cases of symptomatic AML 
usually appear in the younger population, mainly marked by 
TSC2 mutations [48, 49]. Sporadic AML typically begins 
around the age of 50, with unilateral solitary tumors being the 
predominant manifestation, and significant differences exist in 
the largest tumor sizes recorded among various medical cent-
ers [3, 50-52]. Roughly 50% patients with sporadic AML show 
symptoms, frequently reflecting the kidney-related symptoms 
observed in TSC-related AML [32], with a higher incidence of 

tumor rupture and hemorrhage in large-volume sporadic AML 
cases [50, 51]. Comparative research differentiating pathologi-
cal subtypes indicates a notably larger average tumor size in 
eAML compared to non-eAML in the control group [3, 33, 
50], suggesting an increased likelihood of tumor rupture and 
hemorrhage in large-volume eAML.

The imaging of renal PEComas lacks specificity [53]. Re-
nal PEComas may exhibit hypointense or isointense shadows in 
non-enhanced computed tomography (CT), while in enhanced 
CT, PEComas demonstrate notable enhancement in the arte-
rial and venous phases, and slight enhancement in the delayed 
phase. Conversely, in magnetic resonance imaging (MRI), 
renal PEComas display hypointense or isointense shadows in 
T1-weighted images, inhomogeneous hyperintense shadows in 
T2-weighted images, and substantial enhancement following 
enhanced scanning [52, 54]. Classic AML is characterized by 
abundant fatty tissue, blood vessels, and smooth muscle tis-
sue. It demonstrates attenuation patterns resembling fatty tis-
sue on CT scans. On frequency-selective fat suppression MRI 
and chemical shift MRI, it exhibits the loss of signals. Fat-poor 
AML, owing to its low fat content, presents imaging character-
istics akin to RCC, posing challenges in differentiation. Sever-
al machine learning models utilizing non-enhanced CT texture 
features have shown promise in distinguishing fat-poor AML 
from RCC, achieving high accuracy with area under the curve 
(AUC) values exceeding 0.80 [55, 56]. eAML may present as 
high-density shadows on CT scans, often accompanied by ir-
regular enhancement or cystic formations, and appears as low 
signal intensity on T2-weighted MRI [53, 54, 57, 58]. Diag-
nosing PEComas solely through CT and MRI is a challenging 
task, and research has indicated that the accuracy of CT and 
MRI in detecting PEComas prior to surgery ranges from 15% 
to 31% and 22% to 40%, respectively [52, 59]. Although imag-
ing plays a limited role in diagnosing and treating PEComas, 
it is important not to overlook its two functions: firstly, it can 
aid in the initial assessment of tumor benignity or malignancy 
by measuring the size of the primary tumor and detecting ne-
crosis, hemorrhage, invasion of surrounding tissues or blood 
vessels, enlarged lymph nodes, and other malignant tendencies 
of the tumor through CT and MRI; secondly, it can identify 
recurrent metastatic foci during post-treatment follow-up, such 
as the utilization of positron emission tomography (PET)-CT 
to detect the elevated concentration of 18F-FDG in metastatic 
foci of PEComas [53, 60].

Therapeutic Options

Given the generally low malignancy risk associated with most 
renal PEComas subtypes, active surveillance (AS) emerges 
as a predominant treatment approach [61]. A study involving 
130 AML patients uncovered that 13% of those initially opting 
for AS transitioned to active treatment after an average moni-
toring duration of 49 months. The COX regression analysis 
highlighted that tumors exceeding 4 cm in size and the onset 
of symptoms related to the tumor played pivotal roles in the 
decision to discontinue AS [62]. A subsequent meta-analysis 
indicated that during the follow-up period, 11% of AML pa-
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tients under AS experienced an increase in tumor size, 2.2% 
suffered from spontaneous bleeding or hematuria, and 5.7% 
underwent active intervention. This intervention was primar-
ily carried out through selective arterial embolization (77%), 
followed by surgery (19%), and ultimately radiofrequency ab-
lation (4%) [63]. Selective arterial embolization represents a 
secure and minimally invasive treatment approach; however, 
there is a recurrence rate ranging from 25% to 40% following 
arterial embolization for AML. This recurrence rate escalates 
notably when dealing with the embolization of large-volume 
renal AMLs exceeding 8 cm in diameter [64, 65]. Surgical re-
section of tumor lesions emerges as another effective treatment 
modality, with the specific surgical plan contingent on factors 
such as the patient’s baseline condition, tumor location, and 
size. Preferably, partial nephrectomy should be prioritized to 
preserve renal units. In the case of renal PEComas, considering 
drug therapy is also a viable option.

A wide range of chemotherapeutic drugs, including an-
thracycline, platinum, gemcitabine, etc., are accessible for 
renal PEComas. In light of the abundant vascularity of renal 
PEComas, certain scholars have opted to employ anti-vas-
cular endothelial growth factor TKIs, such as apatinib [66], 
sunitinib [67], imatinib [68], etc., for the management of PE-
Comas. Given the potential correlation between the patho-
genesis of PEComas and mTOR, the utilization of mTOR 
inhibitors (e.g. everolimus, sirolimus, temsirolimus, etc.) 
has yielded positive outcomes as well [69]. Zonnenberg et 
al revealed that following a 2-year regimen of everolimus, 
a decrease in kidney size was observed in 85.2% of patients 
(compared to 37.9% in the control group, P = 0.0003), and 
the mean kidney size in the treatment group diminished by 
8.8 mm (as opposed to 1.7 mm in the control group, P = 
0.01). The mean time to best response in kidney size was 
8.2 months in the treatment group (vs. 14.1 months in the 
control group, P = 0.0003) [70]. The study conducted by Cai 
et al demonstrates that the median response time for treating 
TSC-related AML with everolimus is 3 months. Following a 
year of therapy, the tumor size diminished to 41% of its ini-
tial volume (P < 0.002). Yet, after stopping the treatment, the 
tumor size rose to 67% (P = 0.006) and 78% (P = 0.014) of its 
initial size at 6 and 12 months, in that order. The results in-
dicate the need for prolonged use of everolimus treatment in 
treating TSC-related AML [71]. Another study using siroli-
mus to treat both TSC-related and sporadic AML noted a re-
duction in the median tumor size of AML to half of its initial 
levels post-intervention. Significantly, the decrease was more 
marked in tumors with low fat content, showing a reduction 
of -67%, in contrast to a -15% decrease in tumors with high 
fat content (P < 0.001) [72]. Sanfilippo et al [73] conducted 
a statistical analysis on the impact of various medications on 
53 patients with progressive PEComas. The findings indi-
cate that anthracyclines exhibit a 13% objective remission 
rate (ORR), a median progression-free survival (mPFS) of 
3.2 months, gemcitabine demonstrates a 20% ORR and a 
mPFS of 3.4 months for PEComa, whereas TKIs display an 
ORR and mPFS of 8.3% and 5.4 months, respectively. The 
mTOR inhibitors (everolimus 12.5%, sirolimus 80%, and 
temsirolimus 7.5%) exhibited the highest efficacy with an 
ORR of 41% and a mPFS of 9 months. Due to the absence 

of simultaneous occurrence of TSC1/TSC2 mutations and 
TFE3 rearrangements in the majority of PEComas, certain 
studies have proposed that TFE3 rearrangements and TSC1/
TSC2 mutations are mutually exclusive, thereby suggesting 
that PEComa with TFE3 rearrangement exhibits insensitiv-
ity towards mTOR inhibitors [20]. Hence, when diagnosing 
and treating PEComa, it is crucial to meticulously choose the 
drug treatment plan based on its potential combination with 
TFE3 rearrangement. To sum up, a variety of treatments exist 
for renal PEComas, and medical professionals ought to take 
into account the unique circumstances of each patient prior to 
deciding on renal PEComa treatments.

Clinical Case

A 27-year-old male patient was referred to our hospital for 
evaluation of a right kidney mass, initially detected during a 
routine health checkup at a local hospital. The patient reported 
no symptoms such as abdominal or back pain, hematuria, uri-
nary frequency or urgency, dizziness, palpitations, fatigue, or 
poor appetite. Physical examination revealed a flat and soft 
abdomen, with no abnormal pressure points, palpable masses 
or nodules, vertebrocostal point or lumbocostal point tender-
ness, and no renal region tenderness.

CT imaging of both kidneys displayed multiple nodular 
masses of medium and slightly high density, the largest located 
in the upper pole of the right kidney, measuring approximate-
ly 7.9 × 7.6 cm. The mass displaced surrounding tissues but 
maintained clear boundaries. The enhancement scan showed 
inhomogeneous enhancement of the mass, with an increased 
number of right renal artery branches and multiple small cystic 
shadows in the right renal pole. MRI revealed a mass at the up-
per pole of the right kidney, characterized by high T2-weight-
ed image and mixed T1-weighted image signals. Diffusion-
weighted imaging (DWI) and apparent diffusion coefficient 
(ADC) indicated mixed high and low signals. Mild, uneven 
enhancement was observed during both the parenchymal and 
excretory phases, with some boundaries being indistinct and 
compressing adjacent tissues. The small nodules in both kid-
neys exhibited high T2 and slightly elevated T1 signals, show-
ing uneven enhancement following contrast administration. 
These findings raise the possibility of RCC or lipid-poor AML 
at the right kidney’s upper pole (Fig. 1). Routine blood tests, 
liver and kidney function assessments, electrolyte levels, co-
agulation profiles, renin-angiotensin system evaluations, and 
adrenocorticotropic hormone measurements were all within 
normal limits. The estimated glomerular filtration rate (eGFR) 
registered at 123 mL/min.

The left renal nodule was initially addressed with an ul-
trasound-guided puncture biopsy and radiofrequency ablation. 
Pathological examination indicated that it was fibro-fatty tissue 
without any epithelial component or malignant features. Im-
munohistochemistry results showed VIM (-), PAX-8 (-), CD68 
(-), CD163 (-), CK (-), HMB45 (-), melan-A (-), and Ki67 (< 
1%). Seven days later, a transabdominal laparoscopic radical 
nephrectomy of the right kidney was performed. During the 
surgery, a large mass with a rich blood supply was observed 
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at the upper pole of the right kidney. It was poorly demarcated 
from the normal renal tissues and had formed severe adhesions 
with the lower lobe of the liver, the descending part of the duo-
denum, and the inferior vena cava. The mass was meticulously 
dissected, completely separated, and then excised along with 
the right kidney (Fig. 2).

Postoperative pathological examination revealed that the 
right renal mass was PEComa. This diagnosis was character-
ized by a predominance of atypical epithelioid cells, signifi-
cant nuclear atypia exceeding 2/10 HPF, pathological mitotic 
figures, focal tumor necrosis, and vascular invasion. Immuno-
histochemical analysis showed positive staining for HMB45, 
melan-A, and PNL2, but negative for desmin, S100, and TFE3, 
further supporting the PEComas diagnosis (Fig. 3). The final 
diagnosis of malignant PEComa in the right kidney was estab-
lished based on these histological and immunohistochemical 
findings. Postoperatively, the patient recovered well without 
major complications such as severe bleeding, infection, renal 
insufficiency, or urinary leakage. A flowchart of the patient’s 
main treatment events is shown in Figure 4. The patient pre-
sented solely with a one-sided renal mass identified as PECo-
mas, while the opposite renal mass was not renal PEComas, 

and no additional irregularities were found in the physical 
exam or supplementary examination, failing to align with the 
clinical diagnostic criteria of TSC [74]. Post-surgery, our rec-
ommendation was for the patient to try a genetic screening for 
TSC-related mutations, yet the patient declined any additional 
genetic testing for personal reasons. The instructions were 
given for the patient to consume everolimus by oral, and the 
subsequent check-up period has spanned roughly 7 months, 
currently free from any clear adverse effects, and the tumor did 
not recur metastatically in the chest and abdominal CT scans.

Conclusion

Renal PEComas represent a rare tumor variety, marked by the 
lack of distinctive imaging characteristics. Consequently, the 
primary method for their diagnosis is based on histopathologi-
cal and immunohistochemical techniques. Typically, PECo-
mas express both melanocytic and smooth muscle markers. 
Most renal PEComas correlate with positive results, hence the 
preference for active surveillance as a treatment option. When 
patients show tumor-related symptoms and their tumors grow 

Figure 1. The computed tomography (CT) and magnetic resonance imaging (MRI) of the patient.



Articles © The authors   |   Journal compilation © World J Oncol and Elmer Press Inc™   |   www.wjon.org 377

Dong et al World J Oncol. 2024;15(3):372-381

larger, active treatment becomes feasible, including selective 
arterial embolization, surgical procedures, radiofrequency 
ablation, among others. Treatment with medication can also 

be used for renal PEComas management. Currently, the effi-
cacy of mTOR inhibitors, such as everolimus and sirolimus, in 
treating renal PEComas is more pronounced.

Figure 2. The radical nephrectomy of the right kidney. (a) Adhesion of the right kidney to the descending portion of the duodenum. 
(b) The kidney and the duodenum after adhesion were released. (c) Adhesion of the right kidney to the inferior vena cava. (d) 
The kidney and the inferior vena cava after adhesion were released. (e) The lower lobe of the liver after adhesion was released.

Figure 4. The case history.

Figure 3. The histopathology (a-e) and immunohistochemistry (f-h) of the right renal mass. (f) HMB45 positive, (g) melan-A posi-
tive, (h) TFE3 negative.
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