Effects of p53 Status of Tumor Cells and Combined Treatment With Mild Hyperthermia, Wortmannin or Caffeine on Recovery From Radiation-Induced Damage

Shin-ichiro Masunaga, Keizo Tano, Yu Sanada, Minoru Suzuki, Akihisa Takahashi, Ken Ohnishi, Koji Ono


Background: The aim of the study was to examine the dependency of p53 status and the usefulness of mild hyperthermia (MHT) as an inhibitor of recovery from radiation-induced damage, referring to the response of quiescent (Q) tumor cell population.

Methods: Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector (SAS/neo) were injected subcutaneously into left hind legs of nude mice. Tumor-bearing mice received 5-bromo-2’-deoxyuridine (BrdU) continuously to label all intratumor proliferating (P) cells. They received high dose-rate γ-ray irradiation (HDR) immediately followed by localized MHT (40 °C for 2 h), or caffeine or wortmannin administration, or low dose-rate γ-ray irradiation simultaneously with localized MHT or caffeine or wortmannin administration. Nine hours after the start of irradiation, the tumor cells were isolated and incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (= Q cells) was determined using immunofluorescence staining for BrdU.

Results: SAS/neo tumor cells, especially intratumor Q cell populations, showed a marked reduction in sensitivity due to the recovery from radiation-induced damage, compared with the total or Q tumor cells within SAS/mp53 tumors that showed little recovery capacity. The recovery from radiation-induced damage was thought to be a p53-dependent event. In both total and Q tumor cells within SAS/neo tumors, especially the latter, MHT efficiently suppressed the reduction in sensitivity caused by leaving an interval between HDR irradiation and the assay and decreasing the irradiation dose-rate, as well as the combination with wortmannin administration.

Conclusions: From the viewpoint of solid tumor control as a whole, including intratumor Q-cell control, non-toxic MHT is useful for suppressing the recovery from radiation-induced damage, as well as wortmannin treatment combined with γ-ray irradiation.

World J Oncol. 2019;10(3):132-141
doi: https://doi.org/10.14740/wjon1203


Recovery from radiation-induced damage; Dose-rate effect; p53 status; Mild hyperthermia; Wortmannin; Caffeine; Quiescent cell

Full Text: HTML PDF
Home     |     Log In     |      About     |      Search     |      Current     |      Archives     |      Submit      |     Subscribe



Aims and Scope

Current Issues

Conflict of Interest

About Publisher

Editorial Board



Company Profile

Editorial Office

Misconduct and Retraction


Company Registration

Contact Us

Abstracting and Indexing



Instructions to Authors


Declaration of Helsinki

Contact Publisher

Submission Checklist


Terms of Use

Company Address

Submit a Manuscript

Open Access Policy

Privacy Policy

Browse Journals

Publishing Fee

Publishing Policy


Recent Highlights

Peer-Review Process

Publishing Quality

Code of Ethics

Advertising Policy

Manuscript Tracking

Advanced Search

For Librarians


Publishing Process

Publication Frequency

For Reviewers

Propose a New Journal


World Journal of Oncology, bimonthly, ISSN 1920-4531 (print), 1920-454X (online), published by Elmer Press Inc.        
The content of this site is intended for health care professionals.
This is an open-access journal distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, which permits unrestricted
non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons Attribution license (Attribution-NonCommercial 4.0 International CC-BY-NC 4.0)

This journal follows the International Committee of Medical Journal Editors (ICMJE) recommendations for manuscripts submitted to biomedical journals,
the Committee on Publication Ethics (COPE) guidelines, and the Principles of Transparency and Best Practice in Scholarly Publishing.

website: www.wjon.org   editorial contact: editor@wjon.org
Address: 9225 Leslie Street, Suite 201, Richmond Hill, Ontario, L4B 3H6, Canada

© Elmer Press Inc. All Rights Reserved.